Gauss–Seidel and Newton–Raphson Load Flow Methods - IndianDeal

IndianDeal

Indian deal is providing latest offers and news beneficial for the students and to the job seekers.

Breaking

News

Post Top Ad

Saturday, 14 February 2026

Gauss–Seidel and Newton–Raphson Load Flow Methods


LOAD FLOW ANALYSIS – OVERVIEW

Purpose

Load flow (power flow) analysis is used to determine:

  • Bus voltages (magnitude and angle)
  • Active power (P)
  • Reactive power (Q)
  • Power flows in transmission lines


Basic Load Flow Equations

For bus i:

Active power:

Pi=j=1nViVj(Yij)cos(θij+δjδi)P_i = \sum_{j=1}^{n} |V_i||V_j| (Y_{ij}) \cos(\theta_{ij} + \delta_j - \delta_i)

Reactive power:

Qi=j=1nViVj(Yij)sin(θij+δjδi)Q_i = - \sum_{j=1}^{n} |V_i||V_j| (Y_{ij}) \sin(\theta_{ij} + \delta_j - \delta_i)

These equations are nonlinear → solved using iterative methods.


TYPES OF BUSES (VERY IMPORTANT FOR GATE)

1. Slack Bus

Given:

V,δ|V|, \delta

Unknown:

P,QP, Q

Purpose:
Balances system losses.


2. PV Bus (Generator Bus)

Given:

P,VP, |V|

Unknown:

Q,δQ, \delta

3. PQ Bus (Load Bus)

Given:

P,QP, Q

Unknown:

V,δ|V|, \delta

GAUSS–SEIDEL LOAD FLOW METHOD

Basic Principle

Uses iterative voltage updating.

Each bus voltage is updated using latest available values.


Voltage Update Equation (MOST IMPORTANT)

For PQ bus:

Vik+1=1Yii[PijQi(Vik)jiYijVj]V_i^{k+1} = \frac{1}{Y_{ii}} \left[ \frac{P_i - jQ_i}{(V_i^k)^*} - \sum_{j \ne i} Y_{ij}

Where:

k = iteration number

= complex conjugate


Steps of Gauss-Seidel Method

Step 1: Assume initial voltages
Usually:

V=10°V = 1 \angle 0°

Step 2: Update voltages bus by bus


Step 3: Continue until convergence

Condition:

Vik+1Vik<ϵ|V_i^{k+1} - V_i^k| < \epsilon

For PV Bus

Reactive power calculated first:

Qi=Im[ViYijVj]Q_i = - Im \left[ V_i^* \sum Y_{ij}V_j \right]

Then voltage magnitude is fixed.


Acceleration Factor (IMPORTANT FOR GATE)

To improve convergence:

Vinew=Viold+α(VicalculatedViold)V_i^{new} = V_i^{old} + \alpha (V_i^{calculated} - V_i^{old})

Typical value:

α=1.6\alpha = 1.6

Advantages of Gauss-Seidel

Simple

Less memory required

Easy to program


Disadvantages

Slow convergence

Not suitable for large systems


Convergence Speed

Slow

Iterations required: 50–200


NEWTON–RAPHSON LOAD FLOW METHOD

MOST IMPORTANT METHOD FOR GATE


Basic Principle

Uses Taylor series expansion.

Linearizes nonlinear equations.

Uses Jacobian matrix.


Power Mismatch Equations

ΔP=PspecifiedPcalculated\Delta P = P_{specified} - P_{calculated} ΔQ=QspecifiedQcalculated\Delta Q = Q_{specified} - Q_{calculated}

Matrix Form

[ΔPΔQ]=[J1J2J3J4][ΔδΔV]\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}

Where:

J = Jacobian matrix


Jacobian Matrix Structure

J=[PδPVQδQV]J = \begin{bmatrix} \frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial V} \end{bmatrix}

Steps of Newton-Raphson Method

Step 1: Assume initial voltages


Step 2: Calculate P and Q


Step 3: Find mismatch

ΔP,ΔQ\Delta P, \Delta Q

Step 4: Form Jacobian matrix


Step 5: Solve:

ΔX=J1ΔP\Delta X = J^{-1} \Delta P

Step 6: Update voltages


Step 7: Repeat until convergence


Convergence Condition

ΔP,ΔQ<tolerance\Delta P, \Delta Q < tolerance

COMPARISON TABLE (VERY IMPORTANT FOR GATE)

ParameterGauss-SeidelNewton-Raphson
Convergence speedSlowVery fast
IterationsHighLow
AccuracyMediumHigh
Memory requirementLowHigh
Computation per iterationLowHigh
Total computation timeHighLow
Suitable for large systemsNoYes
Convergence typeLinearQuadratic

CONVERGENCE CHARACTERISTICS (IMPORTANT)

Gauss-Seidel:

Linear convergence

Newton-Raphson:

Quadratic convergence (very fast)


NUMBER OF EQUATIONS (GATE FAVORITE)

For n bus system:

Slack bus: 1

PV bus: m

PQ bus: n-m-1

Unknowns:

(n1) angles(n-1) \text{ angles} (nm1) voltage magnitudes(n-m-1) \text{ voltage magnitudes}

Total unknowns:

2nm22n-m-2

ADVANTAGES OF NEWTON-RAPHSON

Fast convergence

Highly accurate

Suitable for large systems

Less number of iterations


DISADVANTAGES

Complex programming

High memory requirement

Jacobian calculation required


GATE EXAM IMPORTANT POINTS

MOST IMPORTANT:

Newton-Raphson → fastest method

Gauss-Seidel → slowest method

Newton-Raphson → quadratic convergence

Gauss-Seidel → linear convergence

Slack bus → balances losses

PV bus → voltage magnitude fixed

PQ bus → load bus